Sabtu, 25 Desember 2010

indonesia (garuda) vs malaysia (harimau layu)

Indonesia vs. Malaysia: A Clash of Epic Proportions

Oktovianus Maniani, right, vies for the ball with Laos player 
Kitsada in an AFF Cup group stage match in Jakarta. The Merah Putih 
midfielder is one of the team’s playmakers. AFP Photo Oktovianus Maniani, right, vies for the ball with Laos player Kitsada in an AFF Cup group stage match in Jakarta. The Merah Putih midfielder is one of the team’s playmakers. AFP Photo

Indonesia may have thumped Malaysia 5-1 in the opening group stage game of the Asean Football Federation Suzuki Cup, but that was a long time ago. Malaysia has proven its quality with results — and blank sheets — against regional powerhouses Vietnam and Thailand.

The Philippines may have put in some sterling defensive performances during their surprise run to the semifinals but Malaysia has more in its locker. The Malaysians have potent scorers, such as Norshahrul Idlan and Safee Sali. Both are very intelligent players and very mobile, electing to play the whole width of the pitch rather than ploughing a furrow down the middle.

Given the estimated two million Indonesian guest workers in Malaysia at any one time, it is fair to say the Merah Putih won’t be friendless at Bukit Jalil Stadium on Sunday night when it steps on the field and it’s expected a fair few Indonesians, attracted by a first ever AFF Cup triumph, will be making the two-hour flight to catch the game.

While Malaysia will pose a far greater attacking threat than the Philippines, Indonesia will be confident enough in its own form and strength in depth. For example, against the Philippines in the second leg, coach Alfred Riedl had to do without poster boy Irfan Bachdim. No problem though. In came the hugely promising Yongki Aribowo and his performance would have given Riedl just the sort of headache a coach loves.

The flanks are the key area in Riedl’s strategy. Through the middle there isn’t a lot of pace, and striker Christian Gonzales likes the ball played to feet. That’s why the role of the wide players has been so important.

Oktovianus Maniani has had the fans on the edge of their seats ever since he joined the national team. Certainly there’s a big roar around the stadium when the 20-year-old gets the ball as fans sense he is always likely to make things happen.

Mohammad Nasuha and Muhammad Ridwan have also done their bit in spreading the play and getting to the bye line. Indeed Ridwan, a teammate of Oktovianus at Sriwijaya, has also chipped in with two goals. Nasuha, with his bandaged head, has become a defining image of this team built on flair but grounded in self-belief and hard work.

On the bench, Riedl has a couple of options to keep pulling wide. Arif Suyono, yet another Sriwijaya player, has been in and around the national team for a number of years now and made a strong impression in Myanmar back in 2008 ahead of the AFF Cup that year. Interestingly, Riedl has been using Arif as an impact player, coming on to replace Oktovianus with some fresh legs and providing yet more cutting edge to the Indonesian front line. With two goals scored and a couple of assists, Arif has done more than enough to hold down a regular first-choice slot on his own.

At the heart of the midfield, again Riedl has like-for-like options on the bench. Firman Utina is finally showing the talent we all know he possesses. There’s a touch of Roy Keane about the midfield dynamo. He tackles, he creates, he scores and he leads. All in one tiny little package.

And if Firman is for some reason unavailable then there would be no qualms in throwing Eka Ramdani into the mix. A younger Firman but no less inspirational and a folk hero down on the Persib Bandung terraces.

If Indonesia does have a weakness then it is at the back where defenders and keepers are prone to the occasional blooper. This makes Ahmad Bustomi’s job just in front of the back four doubly important. The Arema Indonesia midfielder is another player for whom international football seemed to pass by, but his consistent performances during the AFF Cup have impressed fans and critics alike.

It’s been a long time since Indonesia has boasted such strength in depth and cover for every position, just another contributing piece to the current feel-good factor among fans.

But for all their 15 goals scored and two conceded, Indonesia remains very much untested in one key area. Under Riedl they have played nine games and won eight, just that 7-1 reverse against Uruguay blotting the record book. But all the games have been played in front of passionate home crowds. They have yet to be tested in a hostile arena, unlike the Malaysians who have played two group games in Jakarta, where Malaysians tend not to be too popular, and that famous draw in Hanoi which secured their spot in the final. AFF Cup

Sabtu, 18 Desember 2010

MALAYSIA KE FINAL PIALA AFF 2010

Imbangi Vietnam, Malaysia ke Final

Foto: Kapten Malaysia Safiq Bin Harim menempel ketat pemain Vietnam Nguyen Thanh Luong/Reuters
HANOI - Timnas Malaysia berhasil menahan imbang tuan rumah sekaligus juara bertahan Vietnam dengan skor kacamata alias 0-0 pada leg kedua babak semifinal AFF Suzuki Cup 2010, Sabtu (18/12/2010) malam. Meski begitu, hasil ini sudah cukup untuk mengantar Skuad Harimau Malaya melaju ke babak final. Secara keseluruhan, Malaysia unggul agregat 2-0 atas Vietnam. Ini tak lepas dari kemenangan 2-0 anak asuh K. Rajagopal saat melakoni leg pertama di Kuala Lumpur, tiga hari berselang. Dengan hasil ini, Malaysia membuka peluang membalaskan dendamnya atas Indonesia yang mengalahkan mereka 5-1 di babak penyisihan grup. Tentunya, final ideal ini hanya bisa terjadi bila di Indonesia mampu menundukkan atau minimal bermain imbang melawan Filipina pada semifinal leg kedua di Stadion Utama Gelora Bung Karno, Minggu (10/12/2010). Indonesia untuk sementara berada di posisi lebih baik menyusul kemenangan 1-0 atas The Azjkal di leg pertama, Kamis kemarin. Melakoni leg kedua di Stadion My Dinh, Vietnam yang dituntut menang lebih dari dua gol langsung menerapkan stratego menyerang. Sementara Malaysia mencoba tampil lebih sabar dengan memfokuskan diri menjaga area pertahanan demi menjaga keunggulan. Fokus menjaga pertahanan, gawang Malaysia justru dibombadir oleh Vietnam. Tercatat sejumlah peluang dimiliki oleh tim juara bertahan melalui Le Tan Tai dan Pam Thanh Luing di pertengahan babak pertama. Sayang, penampilan ciamik Khairul Fahmi Che Mat di bawah mistar memaksa mereka gigit jari. Vietnam memiliki satu peluang emas jelang turun minum lewat Nguyen Minh Phuong. Tembakan spekulasi yang dilepaskan Minh Phuong sempat mengenai kepala bek Malaysia dan melambung menuju gawang. Beruntung bagi Malaysia, bola justru jatuh tipis di atas mistat gawang Malaysia. Skor 0-0 bertahan hingga jeda. Di babak kedua, pelatih Vietnam Henriquie Calisto menginstruksikan anak asuhnya untuk lebih menekan. Sementara di sisi lain, Rajagopal tetap pada strateginya di awal, yakni fokus menjaga pertahanan dan mengandalkan serangan balik cepat. Strategi full ofensif yang ditampilkan Vietnam pun kerap merepotkan barisan belakang Malaysia. Beruntung, karena koordinasi yang solid di lini pertahanan, maka penyerang-penyerang Vietnam selalu gagal menerobos ke kotak terlarang. Belum juga mencetak gol hingga memasuki menit ke-60, Calisto memasukan Nguyen Anh Duc untuk menambah daya dobrak. Masuknya An Duc pun semakin membuat pertahanan Malaysia bekerja keras mengamankan daerahnya. Namun alih-alih mencetak gol, Vietnam justru harus bermain dengan sepuluh pemain sejak menit ke-70. Pham Than Loung harus menerima kartu kuning keduanya, karena dinilai melakukan diving saat terjatuh di kotak penalti Malaysia. Kalah jumlah pemain tak lantas menyurutkan semangat para pemain Vietnam dalam memburu dua gol. Berbagai variasi serangan pun dilancarkan guna membongkar rapatnya pertahanan Malaysia yang selalu dikawal empat beknya. Meski sempat beberapa kali menciptakan peluang, namun Vietnam tetap gagal membobol gawang Malaysia hingga wasit meniup peluit panjang. Sang juara bertahan pun harus menerima pil pahit tersingkir di hadapan publik sendiri. Susunan Pemain: Vietnam: 1 Doung Hong Son,  2 DoanViet Cuong, 7 Vu Nhu Thanh, 4 Le Phuoc Tu, 6 Tran Dinh Dong, 12 Nguyen Minh Phuong, 22 Phan Van Tai Em, 17 Nguyen Vu Phong, 19 Pham Thanh Luong, 11 Nguyen Trong Hoang, 8 Nguyen Viet Thang. Malaysia: 12 K. Che Mat, 4 M. Putra Omar, 2 S. Mat Abu, 24 M. Ahmad, 27 M. Mohd Shas, 9 N. Talaha, 21 M. Zainal, 12 A. Rohidan, 8 M. Rahim, 16 K. Subramaniam, 10 M. Mohd Sali.

azkals sudah menangi hati warga filipina

Azkals Sudah Menangi Hati Warga Filipina

Azkals Sudah Menangi Hati Warga Filipina
Manila: Dalam waktu singkat sepakbola menjadi topik perbincangan hangat di Filipina. Cukup mengagetkan karena sepakbola dianggap cabang olahraga nomor dua di negeri yang dipimpin Presiden Benigno Aquino. Ya, animo terhadap sepakbola memang berada di bawah bola basket, tinju, atau tenis sekali pun.
Tapi kondisi itu berubah signifikan dalam waktu singkat. Hanya dalam beberapa hari penyelenggaraan Piala AFF, timnas sepakbola mereka mencuri hati masyarakatnya. Pemicunya tak lain keberhasilan Azkals, julukan Timnas Filipina, melaju ke semifinal untuk berjumpa dengan Indonesia.
Melaju ke babak empat besar saja sudah terlihat borok Filipina soal olahraga yang diklaim paling digemari di seluruh dunia ini. Filipina, dalam hal ini federasi sepakbolanya PFF, tak mampu menyelenggarakan leg pertama di kandang. Stadion yang ada tak memenuhi standar dalam menyelenggarakan pertandingan internasional. AFF pun menghadiahi Indonesia dengan menggelar kedua laga.
Dan terlepas dari hasil akhir melawan Indonesia yang sudah memimpin agregat 1-0, Younghusband bersaudara cs sudah memenangi atensi warganya. Diskusi berskala nasional membahas perlunya pemerintahan pimpinan Noynoy Aquino lebih menginvestasikan anggaran negara buat pembenahan sepakbola, seperti yang diklaim harian setempat, gmanews.tv.
Setelah pada leg pertama dikalahkan Indonesia lewat gol sundulan dari Cristian El Loco Gonzales, Azkals tetap dielu-elukan di negerinya. Wakil juru bicara Kepresidenan Filipina, Abigail Valte, mengatakan seluruh rakyat Filipina tetap memberi selamat kepada timnas sepakbola mereka karena telah berjuang dengan sangat gigih. Wajar karena inilah prestasi tertinggi negeri Tagalog yang pada pertemuan terakhir dengan Indonesia delapan tahun silam dihancurkan 1-13.
"Kami sampai pada kenyataan, biarpun mendapat dukungan begitu minim, para pemain (timnas sepakbola) mampu menaikkan level mereka. Terutama di negara dimana sepakbola tidak mendapat apresiasi tinggi, tidak seperti di belahan negara Asia lainnya atau di belahan Eropa dan Amerika," kata Valte.
Ia lalu menambahkan, karena kenyataan ini pemerintah berharap akan memulai diskusi nasional mengenai dukungan bagi perkembangan sepakbola ke depannya. "Kami akan dengan senang hati menggelar diskusi nasional tersebut," tandas dia. Juan Miguel Zubiri, salah satu senator di Filipina, juga mendesak pemerintah memberi dukungan lebih buat program-program perkembangan sepakbola.
Di Indonesia, sepakbola cukup beruntung. Olahraga 11 lawan 11 ini mendapat apresiasi tinggi dari masyarakatnya, bahkan sering kebablasan. Tapi sayang prestasi tak kunjung diraih. Terakhir kali tim Garuda menjadi juara yakni ketika merebut medali emas SEA Games 1991 di Manila, Filipina. Masalahnya sangat pelik untuk diurai. Wajar jika kepengurusan PSSI di bawah Nurdin Halid sudah dianggap gagal. Kisruh pendistribusian tiket saja jadi masalah yang berulang-ulang.(DIM)

BIOGRAPHY OF ALBERT EINSTEIN

Biography

Albert EinsteinAlbert Einstein was born at Ulm, in Württemberg, Germany, on March 14, 1879. Six weeks later the family moved to Munich, where he later on began his schooling at the Luitpold Gymnasium. Later, they moved to Italy and Albert continued his education at Aarau, Switzerland and in 1896 he entered the Swiss Federal Polytechnic School in Zurich to be trained as a teacher in physics and mathematics. In 1901, the year he gained his diploma, he acquired Swiss citizenship and, as he was unable to find a teaching post, he accepted a position as technical assistant in the Swiss Patent Office. In 1905 he obtained his doctor's degree.

During his stay at the Patent Office, and in his spare time, he produced much of his remarkable work and in 1908 he was appointed Privatdozent in Berne. In 1909 he became Professor Extraordinary at Zurich, in 1911 Professor of Theoretical Physics at Prague, returning to Zurich in the following year to fill a similar post. In 1914 he was appointed Director of the Kaiser Wilhelm Physical Institute and Professor in the University of Berlin. He became a German citizen in 1914 and remained in Berlin until 1933 when he renounced his citizenship for political reasons and emigrated to America to take the position of Professor of Theoretical Physics at Princeton*. He became a United States citizen in 1940 and retired from his post in 1945.

After World War II, Einstein was a leading figure in the World Government Movement, he was offered the Presidency of the State of Israel, which he declined, and he collaborated with Dr. Chaim Weizmann in establishing the Hebrew University of Jerusalem.

Einstein always appeared to have a clear view of the problems of physics and the determination to solve them. He had a strategy of his own and was able to visualize the main stages on the way to his goal. He regarded his major achievements as mere stepping-stones for the next advance.

At the start of his scientific work, Einstein realized the inadequacies of Newtonian mechanics and his special theory of relativity stemmed from an attempt to reconcile the laws of mechanics with the laws of the electromagnetic field. He dealt with classical problems of statistical mechanics and problems in which they were merged with quantum theory: this led to an explanation of the Brownian movement of molecules. He investigated the thermal properties of light with a low radiation density and his observations laid the foundation of the photon theory of light.

In his early days in Berlin, Einstein postulated that the correct interpretation of the special theory of relativity must also furnish a theory of gravitation and in 1916 he published his paper on the general theory of relativity. During this time he also contributed to the problems of the theory of radiation and statistical mechanics.

In the 1920's, Einstein embarked on the construction of unified field theories, although he continued to work on the probabilistic interpretation of quantum theory, and he persevered with this work in America. He contributed to statistical mechanics by his development of the quantum theory of a monatomic gas and he has also accomplished valuable work in connection with atomic transition probabilities and relativistic cosmology.

After his retirement he continued to work towards the unification of the basic concepts of physics, taking the opposite approach, geometrisation, to the majority of physicists.

Einstein's researches are, of course, well chronicled and his more important works include Special Theory of Relativity (1905), Relativity (English translations, 1920 and 1950), General Theory of Relativity (1916), Investigations on Theory of Brownian Movement (1926), and The Evolution of Physics (1938). Among his non-scientific works, About Zionism (1930), Why War? (1933), My Philosophy (1934), and Out of My Later Years (1950) are perhaps the most important.

Albert Einstein received honorary doctorate degrees in science, medicine and philosophy from many European and American universities. During the 1920's he lectured in Europe, America and the Far East and he was awarded Fellowships or Memberships of all the leading scientific academies throughout the world. He gained numerous awards in recognition of his work, including the Copley Medal of the Royal Society of London in 1925, and the Franklin Medal of the Franklin Institute in 1935.

Einstein's gifts inevitably resulted in his dwelling much in intellectual solitude and, for relaxation, music played an important part in his life. He married Mileva Maric in 1903 and they had a daughter and two sons; their marriage was dissolved in 1919 and in the same year he married his cousin, Elsa Löwenthal, who died in 1936. He died on April 18, 1955 at Princeton, New Jersey.
From Nobel Lectures, Physics 1901-1921, Elsevier Publishing Company, Amsterdam, 1967
This autobiography/biography was written at the time of the award and first published in the book series Les Prix Nobel. It was later edited and republished in Nobel Lectures. To cite this document, always state the source as shown above.

* Albert Einstein was formally associated with the Institute for Advanced Study located in Princeton, New Jersey

KAPILARITAS

Kapilaritas

Pengantar
Pernah melihat lilin ? mudah-mudahan pernah menggunakannya. Salah satu fenomena yang menarik dapat kita saksikan ketika lilin sedang bernyala. Bagian bawah dari sumbu lilin yang terbakar biasanya selalu basah oleh leleh lilin (di bagian sumbu). Adanya leleh lilin pada sumbu membuat lilin bisa bernyala dalam waktu yang lama. Btw, apa yang menyebabkan leleh lilin bisa bergerak ke atas menuju sumbu lilin yang terbakar ? fenomena yang sama bisa kita amati pada lampu minyak. Lampu minyak merupakan salah satu sumber penerangan ketika belum ada lampu listrik. Mungkin saat ini masih digunakan. Lampu minyak terdiri dari wadah yang berisi bahan bakar (biasanya minyak tanah) dan sumbu. Sebagian sumbu dicelupkan dalam wadah yang berisi minyak tanah, sedangkan sebagian lagi dibungkus dalam pipa kecil. Pada ujung atas pipa tersebut, disisakan sebagian sumbu. Jika kita ingin menggunakan lampu minyak, maka sumbu yang terletak di ujung atas pipa kecil tersebut harus dibakar. Sumbu tersebut bisa menyala dalam waktu yang lama karena minyak tanah yang berada dalam wadah merembes ke atas, hingga mencapai ujung sumbu yang terbakar. Aneh ya, kok minyak tanah bisa merembes ke atas ?
Banyak hal menarik dalam kehidupan kita yang mirip dengan fenomena yang terjadi pada lilin dan lampu minyak. Seolah-olah cairan tersebut mempunyai kaki sehingga bisa bergerak ke atas. Apakah dirimu bisa menjelaskannya secara ilmiah ?
Salah satu konsep fisika yang bisa menjelaskan fenomena yang terjadi pada lilin, lampu minyak serta banyak fenomena terkait lainnya adalah Kapilaritas. Terus kapilaritas itu apa ? untuk memahami konsep Kapilaritas, pahami penjelasan berikut ini.
Gaya Kohesi dan Adhesi
Dirimu mungkin pernah mendengar istilah Kohesi dan Adhesi. Gaya Kohesi merupakan gaya tarik menarik antara molekul dalam zat yang sejenis, sedangkan gaya tarik menarik antara molekul zat yang tidak sejenis dinamakan Gaya Adhesi. Misalnya kita tuangkan air dalam sebuah gelas. Kohesi terjadi ketika molekul air saling tarik menarik, sedangkan adhesi terjadi ketika molekul air dan molekul gelas saling tarik menarik.
Sudut Kontak
Sebelum mempelajari konsep Kapilaritas, terlebih dahulu kita pahami bagaimana pengaruh gaya adhesi dan gaya kohesi bagi Kapilaritas. Misalnya kita tinjau cairan yang berada dalam sebuah gelas (lihat gambar di bawah). Ketika gaya kohesi molekul cairan lebih kuat daripada gaya adhesi (gaya tarik menarik antara molekul cairan dengan molekul gelas) maka permukaan cairan akan membentuk lengkungan ke atas. Contoh untuk kasus ini adalah ketika air berada dalam gelas. Biasanya dikatakan bahwa air membasahi permukaan gelas. Sebaliknya apabila gaya adhesi lebih kuat maka permukaan cairan akan melengkung ke bawah. Contohnya ketika air raksa berada di dalam gelas.
Sudut yang dibentuk oleh lengkungan itu dinamakan sudut kontak (teta). Ketika gaya kohesi cairan lebih besar daripada gaya adhesi, maka sudut kontak yang terbentuk umumnya lebih kecil dari 90o (gambar a). Sebaliknya, apabila gaya adhesi lebih besar daripada gaya kohesi cairan, maka sudut kontak yang terbentuk lebih besar dari 90o (gambar b). Gaya adhesi dan gaya kohesi secara teoritis sulit dihitung, tetapi sudut kontak dapat diukur. Apa hubungannya dengan kapilaritas ?
Konsep Kapilaritas
Seperti yang telah dijelaskan pada pokok bahasan Tegangan Permukaan, pada setiap permukaan cairan terdapat tegangan permukaan.
Apabila gaya kohesi cairan lebih besar dari gaya adhesi, maka permukaan cairan akan melengkung ke atas. Ketika kita memasukan tabung atau pipa tipis (pipa yang diameternya lebih kecil dari wadah), maka akan terbentuk bagian cairan yang lebih tinggi (Lihat digambar di bawah). Dengan kata lain, cairan yang ada dalam wadah naik melalui kolom pipa tersebut. Hal ini disebabkan karena gaya tegangan permukaan total sepanjang dinding tabung bekerja ke atas. Ketinggian maksimum yang dapat dicapai cairan adalah ketika gaya tegangan permukaan sama atau setara dengan berat cairan yang berada dalam pipa. Jadi, cairan hanya mampu naik hingga ketinggian di mana gaya tegangan permukaan seimbang dengan berat cairan yang ada dalam pipa.
Sebaliknya, jika gaya adhesi lebih besar daripada gaya kohesi cairan, maka permukaan cairan akan melengkung ke bawah. Ketika kita memasukan tabung atau pipa tipis (pipa yang diameternya lebih kecil dari wadah), maka akan terbentuk bagian cairan yang lebih rendah (lihat gambar di bawah).
Efek ini dikenal dengan julukan gerakan kapiler alias kapilaritas dan pipa tipis tersebut dinamakan pipa kapiler. Perlu diketahui bahwa pembuluh darah kita yang terkecil juga bisa disebut pipa kapiler, karena peredaran darah pada pembuluh darah yang kecil juga terjadi akibat adanya efek kapilaritas. Demikian juga fenomena naiknya leleh lilin atau minyak tanah melalui sumbu. Selain itu, kapilaritas juga diyakini berperan penting bagi perjalanan air dan zat bergizi dari akar ke daun melalui pembuluh xylem yang ukurannya sangat kecil. Bila tidak ada kapilaritas, permukaan tanah akan langsung mengering setelah turun hujan atau disirami air. Efek penting lainnya dari kapilartas adalah tertahannya air di celah-celah antara partikel tanah. Lumayan, bisa membantu para petani di kebun.
Persamaan Kapilaritas
Pada penjelasan sebelumnya, dikatakan bahwa ketinggian maksimum yang dapat dicapai cairan ketika cairan naik melalui pipa kapiler terjadi ketika gaya tegangan permukaan seimbang dengan berat cairan yang ada dalam pipa kapiler. Nah, bagaimana kita bisa menentukan ketinggian air yang naik melalui kolom pipa kapiler ? mau tidak mau, kita harus menggunakan persamaan :) rumus lagi, rumus lagi… Untuk membantu kita menurunkan persamaan, perhatikan gambar di bawah.
Tampak bahwa cairan naik pada kolom pipa kapiler yang memiliki jari-jari r hingga ketinggian h. Gaya yang berperan dalam menahan cairan pada ketinggian h adalah komponen gaya tegangan permukaan pada arah vertikal : F cos teta (bandingkan dengan gambar di bawah).
Bagian atas pipa kapiler terbuka sehingga terdapat tekanan atmosfir pada permukaan cairan. Panjang permukaan sentuh antara cairan dengan pipa adalah 2 phi r (keliling lingkaran). Dengan demikian, besarnya gaya tegangan permukaan komponen vertikal yang bekerja sepanjang permukaan kontak adalah :
Keterangan :
Apabila permukaan cairan yang melengkung ke atas diabaikan, maka volume cairan dalam pipa adalah :
Apabila komponen vertikal dari Gaya Tegangan Permukaan seimbang dengan berat kolom cairan dalam pipa kapiler, maka cairan tidak dapat naik lagi. Dengan kata lain, cairan akan mencapai ketinggian maksimum, apabila komponen vertikal dari gaya tegangan permukaan seimbang dengan berat cairan setinggi h. Komponen vertikal dari Gaya tegangan permukaan adalah :
Ketika cairan mencapai ketinggian maksimum (h), Komponen vertikal dari gaya tegangan permukaan harus sama dengan berat cairan yang ada dalam pipa kapiler. Secara matematis, ditulis :
Ini adalah persamaan yang kita cari. Jika dirimu ingin menentukan ketinggian kolom cairan

MASSA JENIS DAN BERAT JENIS

Massa Jenis dan Berat Jenis

Pengantar
Pernahkah dirimu mendengar istilah “Massa Jenis” dan “Berat Jenis” ? Kalau dirimu mengatakan belum, berarti pelajaran fisika yang telah diperoleh di SMP pasti telah lenyap dari “otak”. Hehe… pada kesempatan ini kita pelajari kembali apa yang dimaksudkan dengan massa jenis dan berat jenis dan bagaimana hubunganya dengan pokok bahasan Fluida yang saat ini kita pelajari. Selamat belajar, semoga dirimu tidak pusing-pusing
Salah satu sifat penting dari suatu zat adalah kerapatan alias massa jenisnya. Istilah kerennya adalah densitas (density). Kerapatan alias massa jenis merupakan perbandingan massa terhadap volume zat. Secara matematis ditulis :
p = m/v
(p dibaca “rho”) merupakan huruf yunani yang biasa digunakan untuk menyatakan kerapatan, m adalah massa dan v adalah volume.
Kerapatan alias massa jenis fluida homogen (sama) pada dasarnya berbeda dengan kerapatan zat padat homogen. Besi atau es batu misalnya, memiliki kerapatan yang sama pada setiap bagiannya. Berbeda dengan fluida, misalnya atmosfer atau air. Pada atmosfer bumi, makin tinggi atmosfir dari permukaan bumi, kerapatannya semakin kecil sedangkan untuk air laut, misalnya, makin dalam kerapatannya semakin besar. Massa jenis alias kerapatan dari suatu fluida homogen dapat bergantung pada factor lingkungan seperti temperature (suhu) dan tekanan.
Satuan Sistem Internasional untuk massa jenis adalah kilogram per meter kubik (kg/m3). Untuk satuan CGS alias centimeter, gram dan sekon, satuan Massa jenis dinyatakan dalam gram per centimeter kubik (gr/cm3).
Berikut ini data massa jenis dari beberapa zat.
ZatKerapatan (kg/m3)
Zat Cair
Air (4o C)1,00 x 103
Air Laut1,03 x 103
Darah1,06 x 103
Bensin0,68 x 103
Air raksa13,6 x 103
Zat Padat
Es0,92 x 103
Aluminium2,70 x 103
Besi & Baja7,8 x 103
Emas19,3 x 103
Gelas2,4 – 2,8 x 103
Kayu0,3 – 0,9 x 103
Tembaga8,9 x 103
Timah11,3 x 103
Tulang1,7 – 2.0 x 103
Zat Gas
Udara1,293
Helium0,1786
Hidrogen0,08994
Uap air(100 oC)0,6
Kerapatan zat yang dinyatakan dalam tabel di atas merupakan kerapatan zat pada suhu 0o C dan tekanan 1atm (atmosfir alias atm = satuan tekanan)
Gravitasi khusus suatu zat dapat diperoleh dengan membagi kerapatannya dengan 103 kg/m3 (kerapatan air pada suhu 4o C). Gravitasi khusus tidak memiliki satuan dan dimensi.
Apabila kerapatan suatu benda lebih kecil dari kerapatan air, maka benda akan terapung. Gravitasi khusus benda yang terapung lebih kecil dari 1. Sebaliknya jika kerapatan suatu benda lebih besar dari kerapatan air, maka gravitasi khususnya lebih besar dari 1. Untuk kasus ini benda tersebut akan tenggelam.
Berat Jenis (Specific Weight)

Berat jenis suatu zat merupakan perbandingan berat zat tersebut terhadap volumenya. Satuan sistem internasional untuk berat jenis adalah N/m3.

PRINSIP PASCAL

Prinsip Pascal

prinsip pascal
Pernahkah dirimu jalan-jalan ke bengkel ? Jangan jauh-jauh ke bengkel, mungkin dirimu pernah melihat mobil mogok di jalan karena ban dalam mobil tersebut kempis alias pecah ?… nah, ketika roda mobil mengalami kerusakan maka om sopir atau kondektur harus menggantinya dengan roda yang lain. Atau kadang mobil harus digiring ke bengkel, soalnya yang nyetir pake dasi. Agar roda mobil yang rusak bisa diganti maka digunakan bantuan dongkrak hidrolis. Tahukah dirimupascal bagaimana prinsip kerja dongkrak hidrolis ? mobil yang begitu berat bisa diangkat dengan mudah. Aneh bin ajaib. Hehe… semuanya karena fisika. Selain itu, ketika dirimu menumpang mobil atau angkot, coba amati bagaimana kendaraan bisa direm. Kalau pingin iseng, silahkan bertanya kepada om sopir. Om, kok mobilnya bisa berhenti ya ? prinsip kerja rem bagaimana-kah ? mudah2an dirimu tidak diomelin oleh om sopir.
Ok, kembali ke laptop. Bagaimana prinsip kerja dongkrak/ lift hidrolik yang biasa digunakan untuk mengangkat mobil ? bagaimana pula prinsip kerja rem hidrolis ketika digunakan untuk mengurangi laju mobil ? mudah-mudahan dirimu kebingungan dan tidak mengetahui jawabannya… hehe… ingin tahu mengapa ? selamat belajar bersama om Pascal. Semoga setelah mempelajari pokok bahasan ini, dirimu semakin dekat di hati om Pascal serta om sopir dkk…
Prinsip Pascal
Sebagaimana telah kita pelajari pada pokok bahasan Tekanan pada Fluida, setiap fluida selalu memberikan tekanan pada semua benda yang bersentuhan dengannya. Air yang kita masukan ke dalam gelas akan memberikan tekanan pada dinding gelas. Demikian juga apabila kita mandi dalam kolam renang atau air laut, air kolam atau air laut tersebut juga memberikan tekanan pada seluruh tubuh kita. Nah, tekanan total air pada kedalaman tertentu, misalnya tekanan air laut pada kedalaman 200 meter merupakan jumlah tekanan atmosfir yang menekan permukaan air laut dan “tekanan terukur” pada kedalaman 200 meter. Jadi selain lapisan bagian atas air menekan lapisan air yang ada di bawahnya, terdapat juga atmosfir alias udara yang menekan permukaan air laut tersebut.
Tekanan yang ditimbulkan oleh lapisan fluida yang ada di atas bisa kita katakan “tekanan dalam” karena tekanan itu sendiri berasal dari dalam fluida sedangkan tekanan atmosfir bisa kita katakan “tekanan luar” karena atmosfir terpisah dari fluida. Tekanan atmosfir yang dalam kasus ini merupakan tekanan luar, bekerja pada seluruh permukaan fluida dan tekanan tersebut disalurkan pada seluruh bagian fluida. Karenanya tekanan total fluida pada kedalaman tertentu selain disebabkan oleh tekanan lapisan fluida pada bagian atas, juga dipengaruhi oleh tekanan luar (untuk kasus di atas adalah tekanan atmosfir).
Untuk semakin memahami penjelasan ini, mari kita tinjau zat cair yang berada dalam suatu wadah. Tekanan zat cair pada dasar wadah tentu saja lebih besar dari tekanan zat cair pada bagian di atasnya (ingat kembali pembahasan mengenai Tekanan Pada Fluida). Semakin ke bawah, semakin besar tekanan zat cair tersebut, sebaliknya semakin mendekati permukaan atas wadah, semakin kecil tekanan zat cair. Besarnya tekanan sebanding dengan pgh (p = massa jenis, g = percepatan gravitasi dan h = ketinggian/kedalaman). Pada setiap titik pada kedalaman yang sama, besarnya tekanan sama. Hal ini berlaku untuk semua zat cair dalam wadah apapun dan tidak bergantung pada bentuk wadah tersebut. Apabila kita tambahkan tekanan luar, misalnya dengan menekan permukaan zat cair tersebut, pertambahan tekanan dalam zat cair adalah sama di mana-mana. Jadi apabila diberikan tekanan luar, setiap bagian zat cair mendapat “jatah” tekanan yang sama. Karenanya besar tekanan selalu sama di setiap titik pada kedalaman yang sama. Ini merupakan Prinsip Pascal, dicetuskan dan dinamakan sesuai dengan nama pencetusnya, Om Blaise Pascal (1623-1662). Om Pascal merupakan filsuf dan ilmuwan Perancis, bukan Indonesia. Kapan neh dari Indonesia, dirimu-kah ?
Prinsip Pascal menyatakan bahwa tekanan yang diberikan pada cairan dalam suatu tempat tertutup akan diteruskan sama besar ke setiap bagian fluida dan dinding wadah
Secara matematis bisa ditulis sebagai berikut :
P = tekanan, F = Gaya dan A = Luas permukaan. Kata “masuk” mewakili “tekanan yang diberikan”, sedangkan kata “keluar” mewakili “tekanan yang diteruskan”.
Penerapan Prinsip Pascal
Berpedoman pada prinsip Om Pascal ini, manusia telah menghasilkan beberapa alat, baik yang sederhana maupun canggih untuk membantu mempermudah kehidupan. Beberapa di antaranya adalah Dongkrak Hidrolik, Lift Hidrolik, Rem Hidrolik dkk…
Dongkrak alias Lift Hidrolik
Cara kerja dongkrak alias lift hidrolik ditunjukkan pada gambar di bawah.
Silahkan amati gambar yang kusam ini dengan penuh semangat. Jangan dipelototin… hehe… Dongkrak hidrolik terdiri dari sebuah bejana yang memiliki dua permukaan. Pada kedua permukaan bejana terdapat penghisap (piston), di mana luas permukaan piston di sebelah kiri lebih kecil dari luas permukaan piston di sebelah kanan. Luas permukaan piston disesuaikan dengan luas permukaan bejana. Bejana diisi cairan, seperti pelumas (oli dkk).
Apabila piston yang luas permukaannya kecil ditekan ke bawah, maka setiap bagian cairan juga ikut tertekan. Besarnya tekanan yang diberikan oleh piston yang permukaannya kecil (gambar kiri) diteruskan ke seluruh bagian cairan. Akibatnya, cairan menekan piston yang luas permukaannya lebih besar (gambar kanan) hingga piston terdorong ke atas. Luas permukaan piston yang ditekan kecil, sehingga gaya yang diperlukan untuk menekan cairan juga kecil. Tapi karena tekanan (Tekanan = gaya / satuan luas) diteruskan seluruh bagian cairan, maka gaya yang kecil tadi berubah menjadi sangat besar ketika cairan menekan piston di sebelah kanan yang luas permukaannya besar. Jarang sekali orang memberikan gaya masuk pada piston yang luas permukaannya besar, karena tidak menguntungkan. Pada bagian atas piston yang luas permukaannya besar biasanya diletakan benda atau begian benda yang mau diangkat (misalnya mobil dkk)
Dirimu jangan heran jika mobil yang massanya sangat besar dengan mudah diangkat hanya dengan menekan salah satu piston. Ingat bahwa luas permukaan piston sangat kecil sehingga gaya yang kita berikan juga kecil. Walaupun demikian gaya masukan yang kecil tersebut bisa berubah menjadi gaya keluaran yang sangat besar bila luas permukaan keluaran sangat besar. Jika dongkrak hidrolik dirancang untuk mengangkat mobil yang massanya sangat berat maka perancang perlu memperhatikan besar gaya berat mobil tersebut dan besarnya gaya keluaran yang dihasilkan oleh dongkrak. Semakin besar gaya berat mobil yang diangkat maka semakin besar luas permukaan keluaran dari dongkrak hidrolik. Minimal gaya keluaran yang dihasilkan oleh dongkrak hidrolis lebih besar/sama dengan gaya berat benda yang diangkat.
Rem Hidrolik

prinsip archimedes

Prinsip Archimedes

Pernahkah dirimu melihat kapal laut ? jika belum pernah melihat kapal laut secara langsung, mudah-mudahan dirimu pernah melihat kapal laut melalui televisi (Tuh ada gambar kapal di samping). Coba bayangkan. Kapal yang massanya sangat besar tidak tenggelam, sedangkan sebuah batu yang ukurannya kecil dan terasa ringan bisa tenggelam. Aneh khan ? Mengapa bisa demikian ?
Jawabannya sangat mudah jika dirimu memahami konsep pengapungan dan prinsip Archimedes. Pada kesempatan ini gurumuda ingin membimbing dirimu untuk memahami apa sesungguhnya prinsip archimedes. Selamat belajar ya… Semoga setelah mempelajari pokok bahasan ini dirimu dengan mudah menjelaskan semua persoalan berkaitan dengan prinsip archimedes, termasuk alasan mengapa kapal yang massanya besar tidak tenggelam.
Gaya Apung
Sebelum membahas prinsip Archimedes lebih jauh, gurumuda ingin mengajak dirimu untuk melakukan percobaan kecil-kecilan berikut ini. Silahkan cari sebuah batu yang ukurannya agak besar, lalu angkat batu tersebut. Apakah batu tersebut terasa berat ? nah, sekarang coba masukan batu ke dalam air (masukan batu ke dalam air laut atau air kolam atau air yang ada dalam sebuah wadah, misalnya ember). Kali ini batu diangkat dalam air. Bagaimana berat batu tersebut ? apakah batu terasa lebih ringan ketika diangkat dalam air atau ketika tidak diangkat dalam air ? agar bisa menjawab pertanyaan gurumuda dengan benar, sebaiknya dirimu melakukan percobaan tersebut terlebih dahulu.
Untuk memperoleh hasil percobaan yang lebih akurat, dirimu bisa melakukan percobaan dengan menimbang batu menggunakan timbangan pegas (seandainya ada timbangan pegas di sekolah-mu). Timbanglah batu di udara terlebih dahulu. Catat berat batu tersebut. Selanjutnya, masukan batu ke dalam sebuah wadah yang berisi air, lalu timbang lagi batu tersebut. Bandingkan manakah berat batu yang lebih besar, ketika batu ditimbang di dalam air atau ketika batu ditimbang di udara ?
Ketika dirimu menimbang batu di dalam air, berat batu yang terukur pada timbangan pegas menjadi lebih kecil dibandingkan dengan ketika dirimu menimbang batu di udara (tidak di dalam air). Massa batu yang terukur pada timbangan lebih kecil karena ada gaya apung yang menekan batu ke atas. Efek yang sama akan dirasakan ketika kita mengangkat benda apapun dalam air. Batu atau benda apapun akan terasa lebih ringan jika diangkat dalam air. Hal ini bukan berarti bahwa sebagian batu atau benda yang diangkat hilang sehingga berat batu menjadi lebih kecil, tetapi karena adanya gaya apung. Arah gaya apung ke atas, alias searah dengan gaya angkat yang kita berikan pada batu tersebut sehingga batu atau benda apapun yang diangkat di dalam air terasa lebih ringan. Sampai di sini, dirimu sudah paham-kah ?
Keterangan gambar :
Fpegas = gaya pegas, w = gaya berat batu, F1 = gaya yang diberikan fluida pada bagian atas batu, F2 = gaya yang diberikan fluida pada bagian bawah batu, Fapung = gaya apung.
Fapung merupakan gaya total yang diberikan fluida pada batu (Fapung = F2-F1). Arah gaya apung (Fapung) ke atas, karena gaya yang diberikan fluida pada bagian bawah batu (F2) lebih besar daripada gaya yang diberikan fluida pada bagian atas batu (F1). Hal ini dikarenakan tekanan fluida pada bagian bawah lebih besar daripada tekanan fluida pada bagian atas batu.
Prinsip Archimedes
Dalam kehidupan sehari-hari, kita akan menemukan bahwa benda yang dimasukan ke dalam fluida seperti air misalnya, memiliki berat yang lebih kecil daripada ketika benda tidak berada di dalam fluida tersebut. Dirimu mungkin sulit mengangkat sebuah batu dari atas permukaan tanah tetapi batu yang sama dengan mudah diangkat dari dasar kolam. Hal ini disebabkan karena adanya gaya apung sebagaimana telah dijelaskan sebelumnya. Gaya apung terjadi karena adanya perbedaan tekanan fluida pada kedalaman yang berbeda. Seperti yang telah gurumuda jelaskan pada pokok bahasan Tekanan pada Fluida, tekanan fluida bertambah terhadap kedalaman. Semakin dalam fluida (zat cair), semakin besar tekanan fluida tersebut. Ketika sebuah benda dimasukkan ke dalam fluida, maka akan terdapat perbedaan tekanan antara fluida pada bagian atas benda dan fluida pada bagian bawah benda. Fluida yang terletak pada bagian bawah benda memiliki tekanan yang lebih besar daripada fluida yang berada di bagian atas benda. (perhatikan gambar di bawah).
Pada gambar di atas, tampak sebuah benda melayang di dalam air. Fluida yang berada dibagian bawah benda memiliki tekanan yang lebih besar daripada fluida yang terletak pada bagian atas benda. Hal ini disebabkan karena fluida yang berada di bawah benda memiliki kedalaman yang lebih besar daripada fluida yang berada di atas benda (h2 > h1).
Besarnya tekanan fluida pada kedalamana h2 adalah :
Besarnya tekanan fluida pada kedalamana h1 adalah :
F2 = gaya yang diberikan oleh fluida pada bagian bawah benda, F1 = gaya yang diberikan oleh fluida pada bagian atas benda, A = luas permukaan benda
Selisih antara F2 dan F1 merupakan gaya total yang diberikan oleh fluida pada benda, yang kita kenal dengan istilah gaya apung. Besarnya gaya apung adalah :
Keterangan :
Karena
(ingat kembali persamaan massa jenis)
Maka persamaan yang menyatakan besarnya gaya apung (Fapung) di atas bisa kita tulis menjadi :
mFg = wF = berat fluida yang memiliki volume yang sama dengan volume benda yang tercelup. Berdasarkan persamaan di atas, kita bisa mengatakan bahwa gaya apung pada benda sama dengan berat fluida yang dipindahkan. Ingat bahwa yang dimaksudkan dengan fluida yang dipindahkan di sini adalah volume fluida yang sama dengan volume benda yang tercelup dalam fluida. Pada gambar di atas, gurumuda menggunakan ilustrasi di mana semua bagian benda tercelup dalam fluida (air). Jika dinyatakan dalam gambar maka akan tampak sebagai berikut :
Apabila benda yang dimasukkan ke dalam fluida, terapung, di mana bagian benda yang tercelup hanya sebagian maka volume fluida yang dipindahkan = volume bagian benda yang tercelup dalam fluida tersebut. Tidak peduli apapun benda dan bagaimana bentuk benda tersebut, semuanya akan mengalami hal yang sama. Ini adalah buah karya eyang butut Archimedes (287-212 SM) yang saat ini diwariskan kepada kita dan lebih dikenal dengan julukan “Prinsip Archimedes”. Prinsip Archimedes menyatakan bahwa :
Ketika sebuah benda tercelup seluruhnya atau sebagian di dalam zat cair, zat cair akan memberikan gaya ke atas (gaya apung) pada benda, di mana besarnya gaya ke atas (gaya apung) sama dengan berat zat cair yang dipindahkan.
Dirimu bisa membuktikan prinsip Archimedes dengan melakukan percobaan kecil-kecilan berikut. Masukan air ke dalam sebuah wadah (ember dkk). Usahakan sampai meluap sehingga ember tersebut benar-benar penuh terisi air. Setelah itu, silahkan masukan sebuah benda ke dalam air. Setelah benda dimasukan ke dalam air, maka sebagian air akan tumpah. Volume air yang tumpah = volume benda yang tercelup dalam air tersebut. Jika seluruh bagian benda tercelup dalam air, maka volume air yang tumpah = volume benda tersebut. Tapi jika benda hanya tercelup sebagian, maka volume air yang tumpah = volume dari bagian benda yang tercelup dalam air Besarnya gaya apung yang diberikan oleh air pada benda = berat air yang tumpah (berat air yang tumpah = w = mairg = massa jenis air x volume air yang tumpah x percepatan gravitasi). Volume air yang tumpah = volume benda yang tercelup dalam air
Kisah Eyang Archimedes
Konon katanya, eyang butut Archimedes yang hidup antara tahun 287-212 SM ditugaskan oleh Raja Hieron II untuk menyelidiki apakah mahkota yang dibuat untuk Sang Raja terbuat dari emas murni atau tidak. Untuk mengetahui apakah mahkota tersebut terbuat dari emas murni atau mahkota tersebut mengandung logam lain, eyang butut Archimedes pada mulanya kebingungan. Persoalannya, bentuk mahkota itu tidak beraturan dan tidak mungkin dihancurkan dahulu agar bisa ditentukan apakah mahkota terbuat dari emas murni atau tidak. Ide brilian muncul ketika ia sedang mandi dan mungkin karena saking senangnya, eyang butut Archimedes ini langsung berlari dalam keadaan bugil sambil berteriak “eureka” yang artinya “saya telah menemukannya”. Waduh, saking senangnya lupa pake handuk… hehe… ide brilian untuk menentukan apakah mahkota raja terbuat dari emas murni atau tidak adalah dengan terlebih dahulu menentukan Berat Jenis mahkota tersebut lalu membandingkannya dengan berat jenis emas. Jika mahkota terbuat dari emas murni, maka berat jenis mahkota = berat jenis emas.
Berat jenis suatu benda merupakan perbandingan antara berat benda tersebut di udara dengan berat air yang memiliki volume yang sama dengan volume benda. Secara matematis ditulis :
Nah, sekarang bagaimana menentukan berat air yang memiliki volume yang sama dengan volume benda ?
Menurut eyang butut Archimedes, berat air yang memiliki volume yang sama dengan volume benda = besarnya gaya apung ketika benda tenggelam (seluruh bagan benda tercelup dalam air). Hal ini sama saja dengan berat benda yang hilang ketika ditimbang dalam air. Dengan demikian :
Untuk menentukan berat jenis mahkota, maka terlebih dahulu mahkota ditimbang di udara (BeratMahkotaDiudara). Selanjutnya mahkota dimasukan ke dalam air lalu ditimbang lagi untuk memperoleh BeratMahkotaYangHilang. Jadi :
Setelah berat jenis mahkota diperoleh, maka selanjutnya dibandingkan dengan berat jenis emas. Berat jenis emas = 19,3. Jika berat jenis mahkota = berat jenis emas, maka mahkota tersebut terbuat dari emas murni. Tapi jika mahkota tidak terbuat dari emas murni, maka berat jenis mahkota tidak sama dengan berat jenis emas.

Senin, 13 Desember 2010

ARCHIMEDES

Archimedes

Archimedes of Syracuse
(Greek: Ἀρχιμήδης)

Archimedes Thoughtful by Fetti (1620)
Born c. 287 BC
Syracuse, Sicily
Magna Graecia
Died c. 212 BC (aged around 75)
Syracuse
Residence Syracuse, Sicily
Fields Mathematics, Physics, Engineering, Astronomy, Invention
Known for Archimedes' Principle, Archimedes' screw, Hydrostatics, Levers, Infinitesimals
Archimedes of Syracuse (Greek: Ἀρχιμήδης; c. 287 BC – c. 212 BC) was a Greek mathematician, physicist, engineer, inventor, and astronomer. Although few details of his life are known, he is regarded as one of the leading scientists in classical antiquity. Among his advances in physics are the foundations of hydrostatics, statics and an explanation of the principle of the lever. He is credited with designing innovative machines, including siege engines and the screw pump that bears his name. Modern experiments have tested claims that Archimedes designed machines capable of lifting attacking ships out of the water and setting ships on fire using an array of mirrors.[1]
Archimedes is generally considered to be the greatest mathematician of antiquity and one of the greatest of all time.[2][3] He used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, and gave a remarkably accurate approximation of pi.[4] He also defined the spiral bearing his name, formulae for the volumes of surfaces of revolution and an ingenious system for expressing very large numbers.
Archimedes died during the Siege of Syracuse when he was killed by a Roman soldier despite orders that he should not be harmed. Cicero describes visiting the tomb of Archimedes, which was surmounted by a sphere inscribed within a cylinder. Archimedes had proven that the sphere has two thirds of the volume and surface area of the cylinder (including the bases of the latter), and regarded this as the greatest of his mathematical achievements.
Unlike his inventions, the mathematical writings of Archimedes were little known in antiquity. Mathematicians from Alexandria read and quoted him, but the first comprehensive compilation was not made until c. 530 AD by Isidore of Miletus, while commentaries on the works of Archimedes written by Eutocius in the sixth century AD opened them to wider readership for the first time. The relatively few copies of Archimedes' written work that survived through the Middle Ages were an influential source of ideas for scientists during the Renaissance,[5] while the discovery in 1906 of previously unknown works by Archimedes in the Archimedes Palimpsest has provided new insights into how he obtained mathematical results.[6]

Biography

This bronze statue of Archimedes is at the Archenhold Observatory in Berlin. It was sculpted by Gerhard Thieme and unveiled in 1972.
Archimedes was born c. 287 BC in the seaport city of Syracuse, Sicily, at that time a self-governing colony in Magna Graecia. The date of birth is based on a statement by the Byzantine Greek historian John Tzetzes that Archimedes lived for 75 years.[7] In The Sand Reckoner, Archimedes gives his father's name as Phidias, an astronomer about whom nothing is known. Plutarch wrote in his Parallel Lives that Archimedes was related to King Hiero II, the ruler of Syracuse.[8] A biography of Archimedes was written by his friend Heracleides but this work has been lost, leaving the details of his life obscure.[9] It is unknown, for instance, whether he ever married or had children. During his youth Archimedes may have studied in Alexandria, Egypt, where Conon of Samos and Eratosthenes of Cyrene were contemporaries. He referred to Conon of Samos as his friend, while two of his works (The Method of Mechanical Theorems and the Cattle Problem) have introductions addressed to Eratosthenes.[a]
Archimedes died c. 212 BC during the Second Punic War, when Roman forces under General Marcus Claudius Marcellus captured the city of Syracuse after a two-year-long siege. According to the popular account given by Plutarch, Archimedes was contemplating a mathematical diagram when the city was captured. A Roman soldier commanded him to come and meet General Marcellus but he declined, saying that he had to finish working on the problem. The soldier was enraged by this, and killed Archimedes with his sword. Plutarch also gives a lesser-known account of the death of Archimedes which suggests that he may have been killed while attempting to surrender to a Roman soldier. According to this story, Archimedes was carrying mathematical instruments, and was killed because the soldier thought that they were valuable items. General Marcellus was reportedly angered by the death of Archimedes, as he considered him a valuable scientific asset and had ordered that he not be harmed.[10]
A sphere has 2/3 the volume and surface area of its circumscribing cylinder. A sphere and cylinder were placed on the tomb of Archimedes at his request.
The last words attributed to Archimedes are "Do not disturb my circles" (Greek: μή μου τούς κύκλους τάραττε), a reference to the circles in the mathematical drawing that he was supposedly studying when disturbed by the Roman soldier. This quote is often given in Latin as "Noli turbare circulos meos," but there is no reliable evidence that Archimedes uttered these words and they do not appear in the account given by Plutarch.[10]
The tomb of Archimedes carried a sculpture illustrating his favorite mathematical proof, consisting of a sphere and a cylinder of the same height and diameter. Archimedes had proven that the volume and surface area of the sphere are two thirds that of the cylinder including its bases. In 75 BC, 137 years after his death, the Roman orator Cicero was serving as quaestor in Sicily. He had heard stories about the tomb of Archimedes, but none of the locals was able to give him the location. Eventually he found the tomb near the Agrigentine gate in Syracuse, in a neglected condition and overgrown with bushes. Cicero had the tomb cleaned up, and was able to see the carving and read some of the verses that had been added as an inscription.[11]
The standard versions of the life of Archimedes were written long after his death by the historians of Ancient Rome. The account of the siege of Syracuse given by Polybius in his Universal History was written around seventy years after Archimedes' death, and was used subsequently as a source by Plutarch and Livy. It sheds little light on Archimedes as a person, and focuses on the war machines that he is said to have built in order to defend the city.[12]

Discoveries and inventions

The Golden Crown

Archimedes may have used his principle of buoyancy to determine whether the golden crown was less dense than solid gold.
The most widely known anecdote about Archimedes tells of how he invented a method for determining the volume of an object with an irregular shape. According to Vitruvius, a votive crown for a temple had been made for King Hiero II, who had supplied the pure gold to be used, and Archimedes was asked to determine whether some silver had been substituted by the dishonest goldsmith.[13] Archimedes had to solve the problem without damaging the crown, so he could not melt it down into a regularly shaped body in order to calculate its density. While taking a bath, he noticed that the level of the water in the tub rose as he got in, and realized that this effect could be used to determine the volume of the crown. For practical purposes water is incompressible,[14] so the submerged crown would displace an amount of water equal to its own volume. By dividing the mass of the crown by the volume of water displaced, the density of the crown could be obtained. This density would be lower than that of gold if cheaper and less dense metals had been added. Archimedes then took to the streets naked, so excited by his discovery that he had forgotten to dress, crying "Eureka!" (Greek: "εὕρηκα!," meaning "I have found it!"). The test was conducted successfully, proving that silver had indeed been mixed in.[15]
The story of the golden crown does not appear in the known works of Archimedes. Moreover, the practicality of the method it describes has been called into question, due to the extreme accuracy with which one would have to measure the water displacement.[16] Archimedes may have instead sought a solution that applied the principle known in hydrostatics as Archimedes' Principle, which he describes in his treatise On Floating Bodies. This principle states that a body immersed in a fluid experiences a buoyant force equal to the weight of the fluid it displaces.[17] Using this principle, it would have been possible to compare the density of the golden crown to that of solid gold by balancing the crown on a scale with a gold reference sample, then immersing the apparatus in water. If the crown was less dense than gold, it would displace more water due to its larger volume, and thus experience a greater buoyant force than the reference sample. This difference in buoyancy would cause the scale to tip accordingly. Galileo considered it "probable that this method is the same that Archimedes followed, since, besides being very accurate, it is based on demonstrations found by Archimedes himself."[18]

The Archimedes Screw

The Archimedes screw can raise water efficiently.
A large part of Archimedes' work in engineering arose from fulfilling the needs of his home city of Syracuse. The Greek writer Athenaeus of Naucratis described how King Hieron II commissioned Archimedes to design a huge ship, the Syracusia, which could be used for luxury travel, carrying supplies, and as a naval warship. The Syracusia is said to have been the largest ship built in classical antiquity.[19] According to Athenaeus, it was capable of carrying 600 people and included garden decorations, a gymnasium and a temple dedicated to the goddess Aphrodite among its facilities. Since a ship of this size would leak a considerable amount of water through the hull, the Archimedes screw was purportedly developed in order to remove the bilge water. Archimedes' machine was a device with a revolving screw-shaped blade inside a cylinder. It was turned by hand, and could also be used to transfer water from a low-lying body of water into irrigation canals. The Archimedes screw is still in use today for pumping liquids and granulated solids such as coal and grain. The Archimedes screw described in Roman times by Vitruvius may have been an improvement on a screw pump that was used to irrigate the Hanging Gardens of Babylon.[20][21][22]

The Claw of Archimedes

The Claw of Archimedes is a weapon that he is said to have designed in order to defend the city of Syracuse. Also known as "the ship shaker," the claw consisted of a crane-like arm from which a large metal grappling hook was suspended. When the claw was dropped onto an attacking ship the arm would swing upwards, lifting the ship out of the water and possibly sinking it. There have been modern experiments to test the feasibility of the claw, and in 2005 a television documentary entitled Superweapons of the Ancient World built a version of the claw and concluded that it was a workable device.[23][24]

The Archimedes Heat Ray – myth or reality?

Archimedes may have used mirrors acting collectively as a parabolic reflector to burn ships attacking Syracuse.
The 2nd century AD author Lucian wrote that during the Siege of Syracuse (c. 214–212 BC), Archimedes destroyed enemy ships with fire. Centuries later, Anthemius of Tralles mentions burning-glasses as Archimedes' weapon.[25] The device, sometimes called the "Archimedes heat ray", was used to focus sunlight onto approaching ships, causing them to catch fire.
This purported weapon has been the subject of ongoing debate about its credibility since the Renaissance. René Descartes rejected it as false, while modern researchers have attempted to recreate the effect using only the means that would have been available to Archimedes.[26] It has been suggested that a large array of highly polished bronze or copper shields acting as mirrors could have been employed to focus sunlight onto a ship. This would have used the principle of the parabolic reflector in a manner similar to a solar furnace.
A test of the Archimedes heat ray was carried out in 1973 by the Greek scientist Ioannis Sakkas. The experiment took place at the Skaramagas naval base outside Athens. On this occasion 70 mirrors were used, each with a copper coating and a size of around five by three feet (1.5 by 1 m). The mirrors were pointed at a plywood mock-up of a Roman warship at a distance of around 160 feet (50 m). When the mirrors were focused accurately, the ship burst into flames within a few seconds. The plywood ship had a coating of tar paint, which may have aided combustion.[27]
In October 2005 a group of students from the Massachusetts Institute of Technology carried out an experiment with 127 one-foot (30 cm) square mirror tiles, focused on a mock-up wooden ship at a range of around 100 feet (30 m). Flames broke out on a patch of the ship, but only after the sky had been cloudless and the ship had remained stationary for around ten minutes. It was concluded that the device was a feasible weapon under these conditions. The MIT group repeated the experiment for the television show MythBusters, using a wooden fishing boat in San Francisco as the target. Again some charring occurred, along with a small amount of flame. In order to catch fire, wood needs to reach its autoignition temperature, which is around 300 °C (570 °F).[28][29]
When MythBusters broadcast the result of the San Francisco experiment in January 2006, the claim was placed in the category of "busted" (or failed) because of the length of time and the ideal weather conditions required for combustion to occur. It was also pointed out that since Syracuse faces the sea towards the east, the Roman fleet would have had to attack during the morning for optimal gathering of light by the mirrors. MythBusters also pointed out that conventional weaponry, such as flaming arrows or bolts from a catapult, would have been a far easier way of setting a ship on fire at short distances.[1]

Other discoveries and inventions

While Archimedes did not invent the lever, he gave an explanation of the principle involved in his work On the Equilibrium of Planes. Earlier descriptions of the lever are found in the Peripatetic school of the followers of Aristotle, and are sometimes attributed to Archytas.[30][31] According to Pappus of Alexandria, Archimedes' work on levers caused him to remark: "Give me a place to stand on, and I will move the Earth." (Greek: δῶς μοι πᾶ στῶ καὶ τὰν γᾶν κινάσω)[32] Plutarch describes how Archimedes designed block-and-tackle pulley systems, allowing sailors to use the principle of leverage to lift objects that would otherwise have been too heavy to move.[33] Archimedes has also been credited with improving the power and accuracy of the catapult, and with inventing the odometer during the First Punic War. The odometer was described as a cart with a gear mechanism that dropped a ball into a container after each mile traveled.[34]
Cicero (106–43 BC) mentions Archimedes briefly in his dialogue De re publica, which portrays a fictional conversation taking place in 129 BC. After the capture of Syracuse c. 212 BC, General Marcus Claudius Marcellus is said to have taken back to Rome two mechanisms used as aids in astronomy, which showed the motion of the Sun, Moon and five planets. Cicero mentions similar mechanisms designed by Thales of Miletus and Eudoxus of Cnidus. The dialogue says that Marcellus kept one of the devices as his only personal loot from Syracuse, and donated the other to the Temple of Virtue in Rome. Marcellus' mechanism was demonstrated, according to Cicero, by Gaius Sulpicius Gallus to Lucius Furius Philus, who described it thus:
Hanc sphaeram Gallus cum moveret, fiebat ut soli luna totidem conversionibus in aere illo quot diebus in ipso caelo succederet, ex quo et in caelo sphaera solis fieret eadem illa defectio, et incideret luna tum in eam metam quae esset umbra terrae, cum sol e regione. — When Gallus moved the globe, it happened that the Moon followed the Sun by as many turns on that bronze contrivance as in the sky itself, from which also in the sky the Sun's globe became to have that same eclipse, and the Moon came then to that position which was its shadow on the Earth, when the Sun was in line.[35][36]
This is a description of a planetarium or orrery. Pappus of Alexandria stated that Archimedes had written a manuscript (now lost) on the construction of these mechanisms entitled On Sphere-Making. Modern research in this area has been focused on the Antikythera mechanism, another device from classical antiquity that was probably designed for the same purpose. Constructing mechanisms of this kind would have required a sophisticated knowledge of differential gearing. This was once thought to have been beyond the range of the technology available in ancient times, but the discovery of the Antikythera mechanism in 1902 has confirmed that devices of this kind were known to the ancient Greeks.[37][38]

Mathematics

While he is often regarded as a designer of mechanical devices, Archimedes also made contributions to the field of mathematics. Plutarch wrote: "He placed his whole affection and ambition in those purer speculations where there can be no reference to the vulgar needs of life."[39]
Archimedes used the method of exhaustion to approximate the value of π.
Archimedes was able to use infinitesimals in a way that is similar to modern integral calculus. Through proof by contradiction (reductio ad absurdum), he could give answers to problems to an arbitrary degree of accuracy, while specifying the limits within which the answer lay. This technique is known as the method of exhaustion, and he employed it to approximate the value of π (pi). He did this by drawing a larger polygon outside a circle and a smaller polygon inside the circle. As the number of sides of the polygon increases, it becomes a more accurate approximation of a circle. When the polygons had 96 sides each, he calculated the lengths of their sides and showed that the value of π lay between 317 (approximately 3.1429) and 31071 (approximately 3.1408), consistent with its actual value of approximately 3.1416. He also proved that the area of a circle was equal to π multiplied by the square of the radius of the circle. In On the Sphere and Cylinder, Archimedes postulates that any magnitude when added to itself enough times will exceed any given magnitude. This is the Archimedean property of real numbers.[40]
In Measurement of a Circle, Archimedes gives the value of the square root of 3 as lying between 265153 (approximately 1.7320261) and 1351780 (approximately 1.7320512). The actual value is approximately 1.7320508, making this a very accurate estimate. He introduced this result without offering any explanation of the method used to obtain it. This aspect of the work of Archimedes caused John Wallis to remark that he was: "as it were of set purpose to have covered up the traces of his investigation as if he had grudged posterity the secret of his method of inquiry while he wished to extort from them assent to his results."[41]
As proven by Archimedes, the area of the parabolic segment in the upper figure is equal to 4/3 that of the inscribed triangle in the lower figure.
In The Quadrature of the Parabola, Archimedes proved that the area enclosed by a parabola and a straight line is 43 times the area of a corresponding inscribed triangle as shown in the figure at right. He expressed the solution to the problem as an infinite geometric series with the common ratio 14:
\sum_{n=0}^\infty 4^{-n} = 1 + 4^{-1} + 4^{-2} + 4^{-3} + \cdots = {4\over 3}. \;
If the first term in this series is the area of the triangle, then the second is the sum of the areas of two triangles whose bases are the two smaller secant lines, and so on. This proof uses a variation of the series 1/4 + 1/16 + 1/64 + 1/256 + · · · which sums to 13.
In The Sand Reckoner, Archimedes set out to calculate the number of grains of sand that the universe could contain. In doing so, he challenged the notion that the number of grains of sand was too large to be counted. He wrote: "There are some, King Gelo (Gelo II, son of Hiero II), who think that the number of the sand is infinite in multitude; and I mean by the sand not only that which exists about Syracuse and the rest of Sicily but also that which is found in every region whether inhabited or uninhabited." To solve the problem, Archimedes devised a system of counting based on the myriad. The word is from the Greek μυριάς murias, for the number 10,000. He proposed a number system using powers of a myriad of myriads (100 million) and concluded that the number of grains of sand required to fill the universe would be 8 vigintillion, or 8 × 1063.[42]

Writings

The works of Archimedes were written in Doric Greek, the dialect of ancient Syracuse.[43] The written work of Archimedes has not survived as well as that of Euclid, and seven of his treatises are known to have existed only through references made to them by other authors. Pappus of Alexandria mentions On Sphere-Making and another work on polyhedra, while Theon of Alexandria quotes a remark about refraction from the now-lost Catoptrica.[b] During his lifetime, Archimedes made his work known through correspondence with the mathematicians in Alexandria. The writings of Archimedes were collected by the Byzantine architect Isidore of Miletus (c. 530 AD), while commentaries on the works of Archimedes written by Eutocius in the sixth century AD helped to bring his work a wider audience. Archimedes' work was translated into Arabic by Thābit ibn Qurra (836–901 AD), and Latin by Gerard of Cremona (c. 1114–1187 AD). During the Renaissance, the Editio Princeps (First Edition) was published in Basel in 1544 by Johann Herwagen with the works of Archimedes in Greek and Latin.[44] Around the year 1586 Galileo Galilei invented a hydrostatic balance for weighing metals in air and water after apparently being inspired by the work of Archimedes.[45]

Surviving works

Archimedes is said to have remarked of the lever: Give me a place to stand on, and I will move the Earth.
  • On the Equilibrium of Planes (two volumes)
The first book is in fifteen propositions with seven postulates, while the second book is in ten propositions. In this work Archimedes explains the Law of the Lever, stating, "Magnitudes are in equilibrium at distances reciprocally proportional to their weights."
Archimedes uses the principles derived to calculate the areas and centers of gravity of various geometric figures including triangles, parallelograms and parabolas.[46]
This is a short work consisting of three propositions. It is written in the form of a correspondence with Dositheus of Pelusium, who was a student of Conon of Samos. In Proposition II, Archimedes shows that the value of π (pi) is greater than 22371 and less than 227. The latter figure was used as an approximation of π throughout the Middle Ages and is still used today when only a rough figure is required.
This work of 28 propositions is also addressed to Dositheus. The treatise defines what is now called the Archimedean spiral. It is the locus of points corresponding to the locations over time of a point moving away from a fixed point with a constant speed along a line which rotates with constant angular velocity. Equivalently, in polar coordinates (r, θ) it can be described by the equation
\, r=a+b\theta
with real numbers a and b. This is an early example of a mechanical curve (a curve traced by a moving point) considered by a Greek mathematician.
  • On the Sphere and the Cylinder (two volumes)
In this treatise addressed to Dositheus, Archimedes obtains the result of which he was most proud, namely the relationship between a sphere and a circumscribed cylinder of the same height and diameter. The volume is 43πr3 for the sphere, and 2πr3 for the cylinder. The surface area is 4πr2 for the sphere, and 6πr2 for the cylinder (including its two bases), where r is the radius of the sphere and cylinder. The sphere has a volume two-thirds that of the circumscribed cylinder. Similarly, the sphere has an area two-thirds that of the cylinder (including the bases). A sculpted sphere and cylinder were placed on the tomb of Archimedes at his request.
  • On Conoids and Spheroids
This is a work in 32 propositions addressed to Dositheus. In this treatise Archimedes calculates the areas and volumes of sections of cones, spheres, and paraboloids.
  • On Floating Bodies (two volumes)
In the first part of this treatise, Archimedes spells out the law of equilibrium of fluids, and proves that water will adopt a spherical form around a center of gravity. This may have been an attempt at explaining the theory of contemporary Greek astronomers such as Eratosthenes that the Earth is round. The fluids described by Archimedes are not self-gravitating, since he assumes the existence of a point towards which all things fall in order to derive the spherical shape.
In the second part, he calculates the equilibrium positions of sections of paraboloids. This was probably an idealization of the shapes of ships' hulls. Some of his sections float with the base under water and the summit above water, similar to the way that icebergs float. Archimedes' principle of buoyancy is given in the work, stated as follows:
Any body wholly or partially immersed in a fluid experiences an upthrust equal to, but opposite in sense to, the weight of the fluid displaced.
In this work of 24 propositions addressed to Dositheus, Archimedes proves by two methods that the area enclosed by a parabola and a straight line is 4/3 multiplied by the area of a triangle with equal base and height. He achieves this by calculating the value of a geometric series that sums to infinity with the ratio 14.
This is a dissection puzzle similar to a Tangram, and the treatise describing it was found in more complete form in the Archimedes Palimpsest. Archimedes calculates the areas of the 14 pieces which can be assembled to form a square. Research published by Dr. Reviel Netz of Stanford University in 2003 argued that Archimedes was attempting to determine how many ways the pieces could be assembled into the shape of a square. Dr. Netz calculates that the pieces can be made into a square 17,152 ways.[47] The number of arrangements is 536 when solutions that are equivalent by rotation and reflection have been excluded.[48] The puzzle represents an example of an early problem in combinatorics.
The origin of the puzzle's name is unclear, and it has been suggested that it is taken from the Ancient Greek word for throat or gullet, stomachos (στόμαχος).[49] Ausonius refers to the puzzle as Ostomachion, a Greek compound word formed from the roots of ὀστέον (osteon, bone) and μάχη (machē – fight). The puzzle is also known as the Loculus of Archimedes or Archimedes' Box.[50]
This work was discovered by Gotthold Ephraim Lessing in a Greek manuscript consisting of a poem of 44 lines, in the Herzog August Library in Wolfenbüttel, Germany in 1773. It is addressed to Eratosthenes and the mathematicians in Alexandria. Archimedes challenges them to count the numbers of cattle in the Herd of the Sun by solving a number of simultaneous Diophantine equations. There is a more difficult version of the problem in which some of the answers are required to be square numbers. This version of the problem was first solved by A. Amthor[51] in 1880, and the answer is a very large number, approximately 7.760271 × 10206,544.[52]
In this treatise, Archimedes counts the number of grains of sand that will fit inside the universe. This book mentions the heliocentric theory of the solar system proposed by Aristarchus of Samos, as well as contemporary ideas about the size of the Earth and the distance between various celestial bodies. By using a system of numbers based on powers of the myriad, Archimedes concludes that the number of grains of sand required to fill the universe is 8 × 1063 in modern notation. The introductory letter states that Archimedes' father was an astronomer named Phidias. The Sand Reckoner or Psammites is the only surviving work in which Archimedes discusses his views on astronomy.[53]
This treatise was thought lost until the discovery of the Archimedes Palimpsest in 1906. In this work Archimedes uses infinitesimals, and shows how breaking up a figure into an infinite number of infinitely small parts can be used to determine its area or volume. Archimedes may have considered this method lacking in formal rigor, so he also used the method of exhaustion to derive the results. As with The Cattle Problem, The Method of Mechanical Theorems was written in the form of a letter to Eratosthenes in Alexandria.

Apocryphal works

Archimedes' Book of Lemmas or Liber Assumptorum is a treatise with fifteen propositions on the nature of circles. The earliest known copy of the text is in Arabic. The scholars T. L. Heath and Marshall Clagett argued that it cannot have been written by Archimedes in its current form, since it quotes Archimedes, suggesting modification by another author. The Lemmas may be based on an earlier work by Archimedes that is now lost.[54]
It has also been claimed that Heron's formula for calculating the area of a triangle from the length of its sides was known to Archimedes.[c] However, the first reliable reference to the formula is given by Heron of Alexandria in the 1st century AD.[55]

Archimedes Palimpsest

The foremost document containing the work of Archimedes is the Archimedes Palimpsest. In 1906, the Danish professor Johan Ludvig Heiberg visited Constantinople and examined a 174-page goatskin parchment of prayers written in the 13th century AD. He discovered that it was a palimpsest, a document with text that had been written over an erased older work. Palimpsests were created by scraping the ink from existing works and reusing them, which was a common practice in the Middle Ages as vellum was expensive. The older works in the palimpsest were identified by scholars as 10th century AD copies of previously unknown treatises by Archimedes.[56] The parchment spent hundreds of years in a monastery library in Constantinople before being sold to a private collector in the 1920s. On October 29, 1998 it was sold at auction to an anonymous buyer for $2 million at Christie's in New York.[57] The palimpsest holds seven treatises, including the only surviving copy of On Floating Bodies in the original Greek. It is the only known source of The Method of Mechanical Theorems, referred to by Suidas and thought to have been lost forever. Stomachion was also discovered in the palimpsest, with a more complete analysis of the puzzle than had been found in previous texts. The palimpsest is now stored at the Walters Art Museum in Baltimore, Maryland, where it has been subjected to a range of modern tests including the use of ultraviolet and x-ray light to read the overwritten text.[58]
The treatises in the Archimedes Palimpsest are: On the Equilibrium of Planes, On Spirals, Measurement of a Circle, On the Sphere and the Cylinder, On Floating Bodies, The Method of Mechanical Theorems and Stomachion.

Legacy

The Fields Medal carries a portrait of Archimedes.
There is a crater on the Moon named Archimedes (29.7° N, 4.0° W) in his honor, as well as a lunar mountain range, the Montes Archimedes (25.3° N, 4.6° W).[59]
The asteroid 3600 Archimedes is named after him.[60]
The Fields Medal for outstanding achievement in mathematics carries a portrait of Archimedes, along with his proof concerning the sphere and the cylinder. The inscription around the head of Archimedes is a quote attributed to him which reads in Latin: "Transire suum pectus mundoque potiri" (Rise above oneself and grasp the world).[61]
Archimedes has appeared on postage stamps issued by East Germany (1973), Greece (1983), Italy (1983), Nicaragua (1971), San Marino (1982), and Spain (1963).[62]
The exclamation of Eureka! attributed to Archimedes is the state motto of California. In this instance the word refers to the discovery of gold near Sutter's Mill in 1848 which sparked the California Gold Rush.[63]
A movement for civic engagement targeting universal access to health care in the US state of Oregon has been named the "Archimedes Movement," headed by former Oregon Governor John Kitzhaber.[64]